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The Radial Heat Polynomials and Related Functions

L. R. Bragg, Case Institute of Technology

1. Introduction. In a lengthy paper by Rosenbloom and Widder [9] and a more

recent paper by Widder [12], 8 detailed_§tudy_pggwygggmggdgwofﬁggceggggyvggg
sufficient conditions for the validity of expansions of solutions of the heat

equation
(1.1) du(x,t) _ 8%u(x,t)

at ax2

in terms of two basic sets of special solutions: (a) the set

©o

[ o]
{vj(x,t)}jzo of heat polynomials and (b) the associated set {wj(x,t)}j:o .
The elements of the first set are defined symbolically and analytically by
2
, D . .
(1.2) vt =e X+ = ()3 /2, 5 = 00,2,

where Hj(x) is the usual Hermite polynomial. The element wj(x,t) of the

second set is obtained by forming the Appell transform of the vj(x,t). For
t > 0, the two sets {vj(x,—t)} and {wj(x,t)} are biorthogonal on

(- @, ©). The basic theorems relating to the expansions of solutions of
(1.1) show that

(I) expansions in terms of the heat polynomials are valid in a time
strip in which the solution satisfies a Huygen's principle while

(II) expansions in terms of the associated functions are valid in an
upper half-plane (t > ¢ > 0) in which the solution has certain entireness
properties., At the same time, these theorems give rules for determining the
coefficients in these expansions both by real and complex evaluations. The
L2 theory of such expansions 1s then examined, Of basic importance in
getting at these results are (i) the decomposition of the fundamental

1 xR
source solution of (1.1), S(x,t)= (4mt) T e * /4t , in terms of these
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basic heat functions and (ii) the equivalence of the important Huygen's
principle to an absolute integrability condition on solutions of (1.1).

In this paper, we will be concerned with the generalized heat equation

(1.3) Balrat) = 4 . u(r,t)
at i)
where p = 2(a+D, ¢ > 0, and ﬁl = d /ar2 + B== a/ar . The operator Ah

is the Lapla01an 1n radlal coordinates when p =n, a p031t1ve integer.

Of particular interest will be the obtaining of results analogous to (I)

and (II) involving expansions of solutions of (1.3) in terms of the two

basic sets “of functions related to (1.3), the radial heat polynomials

—~ oo
{Rju(r,t)}jzo and their Appell transforms {Rju(r,t)}jzo . These sets

are defined in terms of the generalized Laguerre polynomials Lga)(x) .
Moreover, for t > O, the set {Rju(r,— t)} is biorthogonal to the set
fﬁgu(r,t)} on [0,o) relative to a suitable weight factor. Unlike the

treatment in [9], the solution of (1.3) subject to u(r,0) = ¢(r) has an
integral representation with a more complicated kernel (involving Bessel

functions), Nevertheless, we are able to give a decomposition of this
kernel in terms of the sets {R ¥} and {?%u} and examine the indicated

type of theorems relating to representations of solutions of (1.3). The
restriction a > O 1is taken for simplicity because of the structure of
the asymptotic bounds on the Laguerre polynomials. The important case

@ = -4 can be readily reduced to the theory in [9] by means of the

2j(x).

We make no attempt to be as detailed or complete in our treatment

connection between the functions L( 2)( 2) and H

as were Rosenbloom and Widder. For example, we omit the complex evaluation
of coefficients in expansions as well as the L2 theory of such ex-
pansions. Rather, emggasis is placed on the differences arising from the
use of Laguerre polynomiéis; ‘These differences assert themselves in the

bounds on the basic sets of functions, the kernel of the integral
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representation of solutions of (1.3), and the decomposition of this kernel.
To avolid a repetition with [9],_H§ state a theorem that equates the
Huygen's principle to an absolute integrability condition. This equivalence
is made evident by reducing the proof of the existence of a Poisson-Stieltjes
integral representation for certain solutions of (1.3) to the same types of
arguments used in [9). This is handled by indicating the validity of the
Tychonoff theorem for solutions of (1.3) and by establishing suitable growth
bounds on such solutions.

It will, at times, be convenient to consider (1.3) when 2(atl) = n,a

positive integer. For this situation, the decomposition

S 2 - . .
A = D1 T oeee + Dn » Dy = a/axi, for rectengular coordinates will be

useful in motivating relations between various functions. Some of thesge
will be meaningful even if n fails to be an integer. We occasionally
use symbolic operators, such as exp(téh), for expressing solutions of (1.3)

and their properties in a convenient form. We interpret this operator by

© 3 .
(1.4) exp(td,) - olr) = Zf— 8,7« ofr)
j=0

whenever the series in (1.4) is meaningful. Otherwise, we interpret this

operator by means of an integral to be given in Section 3.

2. The Radial Heat Functions. Let Su(r,t) denote the fundamental source
solution of (1.3), that is

2
(2.1) 5,(r,t) = T L

Let u(r,t) be a solution of (1.3) in some domain &f’(u). Then if

~/
(r/t, - 1/£)e<§¥(u), we define the Appell transform [1] u of u by

(2.2) a(r,t) = 8, (r,t) ulrf, /%) .

In terms of this, we can specify the basic set of functions. Let k be

a non-negative integer. We define the radial heat polynomial Rk”(r,t)

as the analytic solution of (1.3) subject to the condition
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2k

u(r,0) = r and its associated function ’ﬁku(r,t) as the Appell transform

of Rku(r,t). One can easily give explicit forms for these. By (1.4),

Rk”(r,t) = exp(t%)r?“k
(2.3) . . .
=r(&+x) ——(El-——)(j)rz"’(z,t)k"’
T + j
j=0" 2

and from this one readily obtains hﬁku(r,t). Although we will not use this
information, it will be noted that exp(tﬁh) . r2k, when interpreted by

(1.4), is meaningful for any complex L and Rk”(r,t) is a continuous
function of W. Observe from (2.3) that for r >0 and t > 0O,

]
r(5 +k)

B
r(z)

(4)%

(2.4) R (r,t) 2 >0, k =0,1,2, oo .

For the purpose of getting at further properties of these basic sets
of heat functions, such as biorthogonality, let us now examine their
connection with the generalized Laguerre polynomials by means of a generating
function. One such generating function is immediately available for the
radial heat polynomials. For if we require

r

ua(r,O) = ¢® to be satisfied by the analytic solution of (1.3), then it

can be checked directly in (1.3) that
(2.5) u (r,t) = (O - 4at)’“/2 exp(ar2/(1 - 4at) ), 1 - 4at > O.

A comparison of this with the generating function for the Laguerre poly-
nomials ([4], p.189) shows that by making the choices T = 4at and

X = —r2/4t we have
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(e o] (e o]
_ Jila) ey = irla), 2 J
(2.6) u (r,8) = ) L% (x) = ) (4615 (/)87
1=0 j:
In addition, we have formally
| 2 ® 2 .
. 22T = a_ . n2d
exp(téh) e 2; . exp(téh) T
(2.7) J=0
[ee) 1 .
= Z: 3T Rj“(r,t) ad .
j=0
A comparison of (2.6) with (2.7) then shows that
(2.8) RM(r,t) = j! (4t)jL(“)(- r2/4t), j =0,1,2, ...

J J

and this is the desired connection with the Laguerre polynomials. From the

form of the source solution, the following development resultss

. = /2 S -1)d B
(2.9) 5,(r,t) = (4m) }: i Rr1-t), £ > 0.
j=0

By an application of the definitions (2.2) and (2.3), we find the

functions associated with the radial heat polynomials to be
" s
(2.10) Rj”(r,t) =t ZJSu(r,t) Rj“(r,-t), j=0,1,2, ...

when (r/{,—l/%) is in the domain JS&Rju). A generating function,

7ﬁa(r,t), for these is given by

J~
& R.M(r,t), ttia £ O.

(2.11) U, () = 5 (r,t44n) = ;

AL I8
e

J

From the fact that Su(r,t) satisfies the semi-group property

n

S (r,t+4a) = exp(AaAh) . Su(r,t) (see theorem (6.4b) and (2.11))it follows that




G B o’ J
R.7(r,t) = —= 8 (r,t + 4a) = (48 )Y 8 (r,t) .
J aad H a=0 B K
The author uses this relation to obtain .a Rodrigues' formula for the Laguerre
polynomials that involves the Laplacian operator [2].
Next, from the orthogonality relations for the generalized Laguerre

polynomials ([8]), p.205), it follows by (2.8) and (2.10) that for t > O,

® 0 ifjFk
(2.12) f wh)&ﬁm¢faﬂmwa:{ .
0 B J i1 24Jp(% +3) ifj=k
where
p/2
(2.13) Wh(r) =on Mo

This is the biorthogonality relation for the radisl heat functions which
permits a determination of the coefficients in expansions of solutions of
(1.3) in terms of these basic functions.
Finally, when p 1is a positive integer n, we relate these radial heat
polynomials to the usual heat polynomials. We do so by a symbolic approach.
2 2 2 2 2

Let r“=x"+ ... +x° and write A4 =D, “+ ... +D <, D, = 3/ax, .
1 n n 1 n J b
n
. . _ tD:2
With the factorization exp(tAh) = TT e "J , it follows by (1.2) and
J=1
(2.3) that .
n 2k 2 2
Rk (r,t) = exp('tAn)r = exp(tAn)(Xl + eee + Xn )
2
n tD. 2k .
(2.14) = E: (kl’ .g., kn) TT e 9 % J
k.+eeotk =k J=1
Yso”
i= n
_ k
_ 2: (yy wves k) T11v2k.(xj,t) .
k. +. ..tk =k J J
1 n
k;> 0

The cholice t = - 1/4 in this gives a result of Feldheim [5] when n = 2.
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3. The Integral Representation for the Sclution. Let us now interpret the

operation exp(tﬁh) « ¢(r) for more general o(r) than that allowable by
(1.4). This can be accomplished by transforming the Poisson formula in

p = n dimensional space in rectangular coordinates to the radially symmetric
form. The final result permits an interpretation even if p fails to be

an integer. We simply outline the derivation here.

Let r denote the n-vector (rl, cees rn) and let T o £ denote

n
- 1 - '
. = 2 = ev e
the scalar product Z: X+ & . Let r (ror)? and dcr dg, dg .
i=1
Now the Poisson formula in rectangular coordinates is just
- "n/2 - ]l - - — - -
(3.1) ume) = () [ e(@expl- 7% & - Dol - T)] &
E
n

where E_ denotes all of n-space. Let ©, denote the angle between the

- AR |
vectors T and £ so that (r - E)o(r - £) = r2 + 52 - 2r £ cos 61 .

Teking n 2> 2, we introduce the spherical coordinates (g, 91, enes en_l)
in (3.1) with 0¢g<™ 0<B, <My i=1, ..., n~2, and
0< en_l < 2 . The Jacobian of this transformation is

Jd = En-':l'sinn_2 %) sinn"3 62--- ein en

1 and we must evaluate the integral

-2
n i
rt . n-2 .. n-=3 .
jiﬂ j; eee j; {exp [ = cos 61] sin 61}31n 6,++-sin en_zdel den_l .

By successive reductions of this through use of the Beta function and the
definition of the modified Bessel functim (3.1) reduces to

[e o]

(3.2) ule,t) = [ K (85 1) o(2) a
0



with the kernel

n
oy o1 1n/2 2 (2% + ER) /it rf
(3.3) K (r,g5t) = r £ e I 1(2*)'

5.—
Of course, suitable continuity and growth restrictions are needed on o(£)
in (3.2) to ensure that the integral converges. We can now replace n

by p in (3.2) and (3.3). For future reference, we note that for t > O,

(a) r~E;mO Ku(r,E;t) = wp(z) sp(z,t>
(3.4)
0 if p>1
(b) 1im Ku(r,z;t) = .
£ 0 (4n )2 8 (x,t) ifp=1.

From the first of these, we can thus attach a meaning to Kp(O,g;t).

In order to develop representations of solutions of (1.3) in terms
of the sets {ij} and {ﬁ}u}, it will be useful to examine the structure

of Ku(r,z;t) in terms of these functions. This, however, will necessitate
deriving some elementary properties of the kernel relating to these basic
functions along with the development of asymptotic bounds for these basic
functions. We defer the latter question to the next section.
Theorem 3.1. Let r >0 and t > O. Then
(a) Rj“(r,-t) = j'm Ku(ir,a;t)(iz>2jd£

(3.5) 0

Brn sy = [0 % (v ret)p<d
(®) RHr,t) = j; (v, E56)E AL,
Proof. Now from (3.3) we find

2 .2
K (ir,g3t) = é% rl_u/2 Eu/Z e(r -87)/ 4 JE l(g%)
-
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and thus the right-member of (3.5a) becomes
G 1/2 Fn o M2y i
r e £ e J o (e .
2t B 2t
0 -1
2
The change of variables s = 52/4t along with an application of the result

of equation (5),p.135 [3] (which also yields (3.5a) with r replaced by
-ir) shows that this last integral reduces to

(-4t)j ! Lj % "1>(r2/4t). By (2.8), this gives (3.5a). From the validity

of the result for -ir in (3.5a), we get

RH(r,t) = RFG[-ir]8) = @1ﬂR;<4r¢>

(03 [T x Pt Ge)ae

J

0]

o0

K, (r,858) £2ar .

This is just the representation (3.5b).

Next, we examine the important time translation property.

Theorem 3.2 Let -s< t< s and let r >0, q 2 0. Then

o = « . . 0
(a) Ku(r,T\,S'Ft) jo p(r,E,t)Ku(E,T\,S)dE, t >

(3.6)
(0) K, (e,Mss%) = [ 7K (ir,85-6)K (18,058)a8, © <O .

Proof. Both results follow through an application of the formula (25),
p.50 of [4] for Bessel functions. The terms in the integrand of (3.6b)
involve the functions J& N with nm-negative arguments so that the

2
indicated formula applies directly. The proof of (3.6a) can be reduced

to the use of this same formula with complex arguments through use of
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n/é
the relation I (55) = '1‘1'”/2 Ja(£§2_ ), a = % -1 .

Finally, we note for later reference the interchange property

(3.7) K, (r,E50) = (g /e Pt K, (£,73t) .

4. Growth Bounds and the Kernel Decomposition. Let us now examine
growth bounds for the radial heat functions. In decomposing the kernel
(3.3) in terms of such functions, we will need to know in what sense such

a decomposition converges. The bounds we obtain depend upon the connection

between these basic functions and the Laguerre polynomials. We need some

of the elementary results obtained in [9].
Lemma 1. If 0<r<eo, 0<t< o, and 0< <™ k=0,1,2,... ,

then it follows that

2
(4.1) 5, r,0)] < (1 B3 {%ﬁi’l}k SR

Now, it is known that if a > O and x > O, then

I 5“)(;: | < (a+l)3( 7t x/2 (see [4], p.207). Then by (2.8)

2
(4t) F(E+k /8t

| u(r,"t>l <
g u/2) .

By an application of Stirling's formula, there exists a constant A > O
such that for all k "
+ k 1
+k 2 2
r (/2 +k)< A(-‘k%—) [2n(kt+p/2) ]

and we get the result:
Lemma IT, For r >0, t > 0, there exists a constant A such that
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&+ x) 1 2
(a) lep.(r )| < A % (L 4 k}liz— s /8t
(4.2) T
~ F a
meJHSAMnﬂ$&{$h%—~}{%+m%—grﬂt.

Further, let us note that since Iu(r) < %r e /r (atl)

when a > -4 and r > 0 (p.14 of [4], formula (4)), we have

Lemma III. If t >0, >0, md £ >0, then

2 g1 (0%t
(1t 3 (u/2)

A\

1 (4.3) Ku(r,g;t)

We now have sufficient information to get at the desired decomposition

, of Kp(r,ﬂ;t+s). A further growth bound on the radial polynomials will be

given later.

Lemma IV, Let s> 0, £ >0, and T > 0. Then we have

o % 2L
RL(T\,S)E

2=0 r (B+L)

(4o d) Ku(z,n;s> = Wﬁ(n>

The replacement of & by ifZ in this also leads to a correct result.

Proof. This results from collecting the coefficients of like powers of

¥ 1in the series expansion for K (g,m38). Thus

K (E)“,S) = S (T\’ W (T\ ~ /AS Z ,Q Fm"‘}i;Z

(1) 22 m)

m+2Q

=S (T\:S)w (T\>
m m I ot m r (& +2)(4s)
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- ¢l
" {a)ls Ehi L%

=W (1) —5 8, (M5 8)r (J+E
S P as Y FEE) )L St +ﬂ>
©  RHF,s)ed
=w () Z z .
S My )

The reduction to ’ﬁju(n,s) of the bracketed term in the next to the last

series follows directly from (2.3) and the remark following it. The result with
£ replaced by 1f holds since all functions involved here are entire for
s >0,

We now come to the main decomposition theorem for Kp'
Theorem 4.1. Let s> Oand [t|] <s. Ifr, T >0, we have

R (r,t) B (@,s)
N TRC TS )

(4.5) Kp(r,ﬂ‘;t-l's) = wu('n) .

Proof. We consider two cases according as (a) t > O or
(b) t < 0.
Case (a). From the relation (3.6a) and (4.4) we have
212

roo

Kp(r,ﬂ;t+s) =

K (r,&5t) )
0 It t T\ ;O A‘Q’Q| I‘(&+/Q

~/
© By (n,s)
wm ) —k
L

7K, (rhE5t) 2L,
A2rr Jo Tutmeswe e

and the result follows by (3.5b) provided that, say,

lj(n, I 0 . . Z‘Q -
lw M) | Z iy €D fo IKu(r,E,t)l €5 dg < o,
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Introducing the bounds given in (4.1) and (4.2), this series is dominated

by the sum
2 2
W) a (4ms) ¥/2 VB + 2 0d(y o pynl
+1
where 0 {A%hﬁ)}k{%*_h%{éj(t%}}Q
- se e
° lgo 2419.'1“(%%() >

0< 8 < s-t, The limit of the ratio of the (/Q+l)st to the ,D,th term in
this sum o is just (t+5)/s so that the theorem follows for s > t > 0.

Cagse (b). From (3.6b) and the stated modification of (4ed), we find
(for s > |t] and t < 0)

= B e

K (r,M;stt) = K( E,—t)W()
p N3 s f e L Zo 24’2,911“(%%)

dg

Y (@,s) o o
¢ JZO oy e b

and the result follows by (3.5a) (since -t > 0) provided that
Y.

oo | ey
wm)z 2201 T+ /o) Io ‘K“(lr’a"t) Podeses

But

S N 2L _ 1 1-u/ep/2 21
fo [k, Gr,e50) 62 " fo,l e ng =)

2 0 2
T/ Kp(r,z;t)zzﬂdz = /2 B (r,0).
- 0

Now, by the argument as used in Case (a), we get convergence of the
dominating series.
We can now make an application of (3.7) along with (4.5) to give
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further decompositions. Using the ssme hypotheses as those in theorem 4.1,

we can interchange the arguments r and 1| under the sign of summation in

the right-member of (4.5). The factor W (7|) remains unaltered in this.
Finally, let us note from (2.8) and (2.10) that the relation (4.5)

reduces to

. _JLL__ (a) —r (a) n_ -t L
K, (0,Tl3t4s) = W (1)s m,s>Zo Sl LJA oy G &)

for |t| <s and p = 2(atl). Compare this with the relation (20), p.189 of
[4].

5. The Coefficient Behavior in Convergent Expansions. In this section

we state results relating to the behavior of the coefficients involved

in convergent expansions in terms of the sets {Rju(r,t)} and {ﬁéu(r,t)}.

Such knowledge permits a characterization of the regions of validity of
certain types of expansions in terms of constants related to an entire
function (the order and the type). The methods for proving many of these
results are similar to those in [9] but depend upon different bounds. In
most cases, these proofs are omitted except where a difference arises be-

cause of the different underlying set of basic function.
©

Lemma 5.1. Suppose that the series E} ajRju(r,t) converges at
j=0
(ro,to) for 1y >0, t> 0. Then

(5.1) a. =0 { {-——Ji—————— }
J Atoi% '1+j }

Proof. By the assumed convergence of the series at (ro,to), it

oy bl
t 5
} as j—> o,

results that there exists a positive constant M such that, for all j,

lajRj”(ro,to)l < M. Then for all sufficiently large j,
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M (p/2) .
rE+5)4,)

;| < MR (mgrtg)} ™ by (2.4))

1A

4t -+ %
< M ["Q {% -1+ ji] ? s M =M (n,t,) .

e

We have just made use of Stirling's formula in the last step. This final

bound is just a restatement of (5.1). The lower bounds by (2.4) have the

same form regardless of the parity of k in Rkp' (r,t). The forms of these lower
bounds change in the case of the usual heat polynomials Vi (x,t) according to
the evenness or oddness of k. Thus, we get a simplification here.

Remark. Since p > 2, it follows that we could obtain the larger bound of
M*[ e/(Atoj)]'] for Iaj |. This larger and simpler expressed bound will prove

to be useful later when converse results are given.
Our next result on the behavior of the coefficients aj depends upon

the Fejer!s asymptotic formula for the generalized Laguerre polynomials [10].

Let xe€[e,w], € > 0. Then as ] —> »,
_ (&t -l 203
Lj(a)(x) =2 &2 b 4 sos[a(n)M/? _(&az_l)n] wol; 4 ).

Through use of the connection (2.8) we have:
Lemma 5.2. Let 1t > 0 and restrict r2/4t to some finite interval
[e,w], € > 0. Then as j—> o,

R.F(r,-t) =
J +

) gt 5T 20-3
(5.2) (_1)541/4 egazi r—a—l/2 er2/8t{%_€]_} cos [(‘Lif) —(‘2‘%}-‘)%"06 4 > .

niR
S

With this, we can immediately obtain
Lemma 5.3. Let tO >0 and 0K & <a<r<b and suppose that
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o jHe=
2 .
,R.p -t conv for r bl. The .=0 e .
.ZbaJ 5 (r, O) onverges €la,b] n o a; {EZTESIJ)
J:

Theorem 5.1. Let {aj}§;0 be a sequence of complex numbers such

1/7,. ' @

that 1im sup { |a,| %9 =1/0 <. Then the series Z: a.R."(r,t)

j ——» 00 J e JJ

J =0

J
converges absolutely in the time strip It] < ¢ and not everywhere in any
larger strip. This strip size is independent of p.
Proof. This follows by a dominated convergence proof by using the

bounds on laj] in the hypothesis and the bound (4.1) if t > O and the
bound (4.2a) if t is negative.

Definition 5.1 An entire function is of growth (p,t) iff

lim sup (=) l a.[p/'.j <7T.
j—> o ep J =

Definition 5.2 A function u(r,t) satisfies condition H in a

domain &Yif u(r,t) is continuous and satisfies (1.3) in aJ.
[o o]

Theorem 5.2. Let E: ajij(r,t) converge to some function
j=0
u(r,t) for |t| <o. Then u(r,t)ed in this strip and u(r,0) is an even
function which is entire with growth (1, 1/4c) in r<.

Proof. The uniform convergence of the series to a solution function
u(r,t) follows directly by the usual application of Harnack's theorem for
temperature functions only modified to the Rju(r,t). At % =0, this

series converges to o0
u(r,0) = E:ajer ,
j=0
an even function of r. Let t; be selected such that [tgl <o
-1
4+ B=L
4

J
Then ]ajl <M {e/4]ty]i} for j suitably large and

Aj‘
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lim sup % |ajl < lim sup

= ==

1/ 1/5{ J}l ¢l

Now let [ty|—> o to get the theorem.

We also have the analogous theorems holding for expansions in terms
of the ’ﬁj“(r,t).

Theorem 5.3. If 1im sup Ailb | =0 < o, then the series
j—>

<0

biﬁju(r,t) converges absolutely in the half-plane t > o and not every-

j=0
where in any including strip.
0

Theorem 5.4. Let Z:bgﬁj“(r,t) converge for t >o > 0. Then
j=0

u(r,t)€H in this half-plane.

6. Expansion Theory Preliminaries. In the previous sections, we have

given most of the essential background for the formal work in developing

expansions of solutions of (1.3) in terms of the sets {Rju} and {ﬁju} .

Not all of these expansions are meaningful, however. As an example, when
B = 3, the function 1/r, r # O, satisfies (1.3) for all t. This function
has a formal expansion in terms of the set {RjB(r,t)}. If such an ex-
pansion converges at t = 0, it converges to an even function, which is a
contradiction, and if the series diverges at t = 0, the expansion is

meaningless there.

We therefore need to be able to select appropriate classes of solutions

of (1.3) each member u(r,t) of which can be represented by a series of
these basic heat functions which converges uniformly in some domain to
u(r,t). Of necessity, these will be analytic in r° for r > 0 in the

appropriate time range (in n-space, n integer and n > 2 if

r2 = x12 .o F an, then only even powers of r are analytic in

(Kys ooy xh) in a neighborhood of the origin), In order to determine these
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classes, we give the following definitions.

Definition 6.1. (The Huygen's Principle). A function u(r,t) satisfies

the Huygen's principle for r > 0 and a <t < b, =and we write ueH*, if

u€H in this domein and wu satisfies the semi-group property

6.1) u(r,t) = j Kp(r,g;t-t') u(g,t')dE for a < t'< t < b.
0

Definition 6.2 (Abgsolute Integrability Condition). A function u(r,t)

satisfies the condition of absolute integrability for r >0 and a < t < b,
end we write u€A, iff uegH and there exists a positive function M(a',b')
defined for a < a' < b' < b such that

(6.2) f:lu(i,ﬂl wp(z) Sp(g,b'-t)di < M(a',b'), a'<t < b' .

The basiec result relating these definitions that appears to be essential in
the expansion theory is given by

Theorem 6.1. Let §Ydenote the domain r > 0, a < t < b. Then
weH* in &Y if and only if ugA in LY -

The analogous theorem is proved in detail in [9] and is based primarily
on the existence of a Poisson-Stieltjes integral representation for certain
absolutely integrable solutions of (1.1). Two important results used in

this proof are (a) every solution of (1.1) that grows no more rapidly than

2
KeAx s K and A non-negative constants, for a < t < b satisfies the Huygen's

principle over the part of this time range in which the corresponding
integral converges absolutely (Lemma 6.2 of [9])and (b) every absolutely
integrable solution of (1.3) is bounded in growth by such an exponential
function. The proof of (a) is based upon the Tychonoff theorem ([7], p.183)
while (b) is based upon growth bounds related to the kernel involved in
integral representations of solutions of (1.1). If we can establish the
analogous results (a) and (b) for the problem involving (1.3) with corres-
ponding kernel Ku(r,g;t), then we can use the reasoning of [9] to prove

our Theorem 6.1. We lead up to these results through a sequence of ele-

mentary lemmas,
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Lemma 6.1. Let R > O and let D, denote the rectangle

O<Kr<R and 0<t<ec. Let B=D, - D, the boundary. Then if

R R
. . . - 1lim .
(i) u{r,t)e ® in D, and (1) r_:;;o u(r,t) > 0 for (ro,to)e:B, it follows
t——>to

that wu(r,t) > 0 in DR .

Proof. The argument needed here is similar to that in the proof of
Theorem 5.2, p. 184 of [7]. The omission of the segment r = O from the
domain D, is required because of the singularity in the equation (1.3)

R
at r = 0, Also, if up = 3, the function l/% fails to satisfy condition (i)

at r = 0 but does satisfy the conclusion of the lemma.

Lemma 6.2. Let x > 0 and let p > 2. Then we have

1 _ X > -
(6.3) e X1 (x) >b j’ qEQ2 e Nan
B2 %,
2
where bp = 8, /[ZH/Z_lf(%Q F(Eél)] with 8, =14if p > 3 and
p=3
a, =22 if 2<p< 3. The right-member of (6.3) is a monotone in-

creasing function of x which has the finite non-zero limit bpl“(Egl ).

Proof. By exercise 16, p. 121 [8], we have

-1
5 w2 2 ()
IE (x) = 'ET—-—-——— J' sin @ cosh (x cos 6)de
- - -1
2 ~ 2 r@reEs) o
p=3
x“/Z—l 1 2, 2
= j‘ (1-s) cosh s x ds.
- -1 0]
22 Tr@)r ()
p=3
The factor (1+s) 2 of the integrand of this last integral has the lower

bound a, on [0,1]. Then
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p-1
2 -
1 X 8 1 (1.
x2 e © IE (x) > % =] = (1-s) ? o (1-8)x ds
271 T 2% raresh °

where we have used the fact that cosh s x > e5*/2. The result follows from
this last inequality by the change of variables (1-s) x = E.

From this, we have the direct consequence

Lemma 6.3. Let R > O and let 0< t < c. Then we have

R /2c Ezi

(6.4) K, (R,R5t) > (2¢) 2b f e Nan .

Lemma 6.4. (Modified Tychonoff Theorem), Let the following conditions
be satisfied: (i) u(r,t)€H in 0<t<ec forr>0; (ii) u(0,t) =0,

0<t<e; (iii) 1lim u(r,t) =0 for all r., 0 < r, < o}
= 0 =0
r-—>ro

t-—>'0+
max ar2
0<t< clu(r,t)l; and (v) f(r) =0(e~ ) as r—» o for

some a. Then u(r,t) = 0 throughout the strip 0< t < e,r > O,

(iv) f(r) =

Proof. Let R > 0O and define the auxiliary function URu(r,t):

L (2c)2$u(r,R;t)
m
p=3
. R2/2c 2
with A(R) = f 1 “ elaN. Then by hypotheses, lemma 6.3, and
0
lemma 6.1, it follows that the pair UR”(r,t) tu(r,t) >0 in Dy or
-URp'(r,t) < ulr,t) < UR“(r,t) in Dp. Fix r < R and let R—> @, By
application of the growth bound (4.3), we have
, (B2
TRkl 4t
Uy (r,t) < (8°3/R e £(R).
= o, WM T Bar)

Since A(R) tends to a finite-non zero limit as R—> o, it follows that

URE(r,t)-—> O provided 4at < 1. If ¢ is in this time range, the proof



- 2] -

is complete. If ¢ is not in this range, replace the condition (iii) at
t = O by the same condition at t =Db, b > 0 and 4ab < 1. Then repeat
the above arguments a sufficient number of times.

We now make use of the following inequality, noted in [9], namely:

if A, x, and y are real numbers in (- w,®), 0 < t <o, and 1 -4At > O, then

2
(6.5) ay® - ixifl— < (Ax?) / (1-4At).

Lemma 6.5. Let t' <t < ty. Then we have

(6.6) Kp(r,E;t—t') / K“(ro,g;to-t')
r 2+ r2
bt '\F/2 =
crd) (F5) AT
Proof. We observe, by definition, that
p-1 ~eft €2 [4ltg-t")
K (r,E3t-t') > 2 e O 0
p O’ ’ O - p'/2 .

rB)4leg-t")]

If we apply (4.3) to Kp(r,i;t-t'), it follows that the left member of
(6.6) is bounded by

NN YL 2/ 4,4 ~t) 2
<—ch‘> e ” 0 exp[iz/a(to-t'%(r'g) JAt-t")] .

Upon applying the inequality (6.5) to the second exponential (its argument),
we obtein the result (6.6).

With these lemmas available, we now have the essential tools for

applying the arguments in § 6 of [9] to prove

Theorem 6.2. Let u(r,t) satisfy the conditions:
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[o 0]
(1) ul(r,t)eH, 0<t<c and (ii) j‘ [u(r,t) [0, (£)s, (r,e-t)ar <.
0
These are necessary and sufficient that u(r,t) have the Poisson-Stieltjes

integral representation

u(r,t) = " K (r,€;t)da()
[

[0 o]
where j‘ W (g)S (g,¢)|dal(g)]| < = .
o & 5
With this, we conclude our treatment leading up to the proof of our
Theorem 6.1. We only note that in proving that any solution u{(r,t) of (1.3)
which is bounded by KeAr2 for a <t < b satisfies the Huygen's principle

there, the condition (ii) of lemma 6./ translates into
[o o]
u(0,t) = j' K (0,g5t-t") u(g,t')ax.
o F

This indicates the structure demanded of u at the singulsr point r = O.
In particular, if r = 0 1is a removable singular point, then we can use
this condition to redefine u there.

We conclude this section with two theorems. One of these relates the
time independence of certain integrals to the Huygen's principle and the
other shows that the basic radial heat functions {R?} and {ﬁ?) satisfy
the Huygen's principle,

Theorem 6.3. Let u(r,t)eH™ for a <t < b and let vir,t)eH¥
for a < -t < b, Assume further that the following condition maintains
for a<t<t'<b:

fow u(z)lu(z,t)Idz {fo Kp(i,r;t'-ﬂIV(r,—t')|dr} < o,

o0
Then the function g(t) = j' W, (£)u(g,t)v(e,~t)de is independent of t in (a,b).
0

Proof. By writing a similar expression for g(t™® with, say,

t *> ¢ and a < t ¥< b, we can show, by replacing u(r,t ™) by
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oo

j Ku(r,z;t* -t) u(g,t)dc (under the hypothesis) in this integral for g(t¥).
0

Upon interchanging the order of integration in this (permissible by the con-
vergence hypothesis), we find that the expression for g(gé) reduces to the
one for g(t). The interchange property (3.7) and the conditon veHd are

needed to complete the reduction after this interchange has been made.
Theorem 6.4. (a) All members of {Rju} are in H* for all t (real)
end (b) all members of {’ﬁj”} are in H¥ for t > O.

Proof (a) We could give this proof by resorting to integrals of
special functions directly. However, let us use the definition (2.3)
and the result (3.5b). From (2.3) we have for t > t',

foo K (r,g3t-t') R.*(z,t")a
o M J

’F(EJ’J)Z r l£v+k (J) ()7 Rku(r’t‘t‘)

k=0

rien [ () @ § ol e ]

=0

—F(E+3) Z Z r(E+D( )(‘Q) (46" 4tt") kQZ&

k=0 §=0

I ) iR
=r &+ 3>Z —l‘f—{z

=0 T(Ezi +2) n=0

'—n—h n
(m&) (') [4(e-t")] } )

-L

this last sum gives p'(r t) by (2.3) and we have proved (a).

The inner sum in this last double sum reduces to (R)(At so that

(b). This can be proved easily by application of Theorem 6.1.

However, let us give a proof by means of a generating function. Let

t >4 >0 and select a > O with 4a < t'. Then by (2.1) and (2.5)
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f°° K (r,g3t-t') S (£,t'+ 4a)df =S (r,t + 4a)
o K B B

(6.7) oo

this last holding by (2.11). However, if we replace Su(z,t'+ 4a) in this
integral by its series expansion and interchange the orders of integration

and sumation, we obtain formally that this integral reduces to

(6.8) Z%f K, (roEstt) B b (g,8ar

end (b) follows by comparing the sums in (6.7) and (6.8). The interchange

gbove is permissible if, say,

_a_' o ! e ' o
Z .! IO 'Kpl(rsgpt t )I IRJ (E’t )ldE < .

By (4.3) and (4.2b), we can obtain a sum which dominates this. This sum

converges if 4q/t'< 1 as 1s easily shown by the ratio test.

7. The Expansion Theorems. We are finally in the position to give the

basic theorems on the expansions of solutions of (1.3) in terms of the

sets {ij} and ﬁ}u}. The three theorems given are analogous to theorems
11.1, 12.3, and 12.1, respectively, of [9]. The third theorem characterizes
solutions u(r,t) of (1.3) that have convergent expansions in the set

{ﬁsu} in terms of an integral related to the Hankel transform. We have

developed, in the preceding sections, the counterparts to all of the
essential elements entering into the proofs of Theorems 11.1 and 12.3
of [9]). Therefore, we omit the proofs of the first two theorems given in

order to avoid unnecessary duplication of effort.

Theorem 7.l. A necessary and sufficient condition that
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(7.1) ulr,t) = Za.R.p'(r,t) ;
520

3
the series converging in the strip It] < o, is that u(r,t)H in this strip.

Moreover, the coefficients aj in this are given by

_ 1 ® Y
I - W -t )R, t)d 0<t K
(a) s iy +%JO (et )R,* (€, 0)a, o
(7.2)
2]
1 7]
(b) a, = u{r,0) ]r:O .

i~ (23 ar?d

Theorem 7.2. A necessary and sufficient condition that

[o o]
d
(7.3) alr,t) = ) o EFEe)
i=0 %
the series converging in the upper half-plane t > ¢ > 0O 1is that

* © 2
u(r,t)€H  end that | €70 e /8% |3(£,4) |4 < ® in this half-plane.
0

Moreover, we have

(7.4) b, = ——=t W (£)R.M (g, -t u(E,t)aE, o <t <o .

Theorem 7.3. A necessary and sufficient condition that u(r,t) have

the representation (7.3), the series converging for t > o© > 0 1is that

© 2
(7.5) u(e,t) = (o2 AR [Ty ey e)ar
0 2 -1

where o(£) is an entire function of growth (1,0) in £°. The expression

(7.5) can be written alternatively as

-1
2
(7.5|) u(r,t) —_ (2H)—p'/2 r(l“u)/z"‘}_(& 1(1‘,1‘ % e—'.[‘ tcp(r))
5>~

where 7R’E g?,w(r)) denotes the Hankel transform of ¢(r). Moreover,
s -

the bj in (7.3) are given by bj = ¢(2j)(0)/[(—4)j(2j)!] .
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Proof. (a) Sufficiency. Now we have, by the integral representation
(3.5a) and the Appell transform

~ _ {4mt) H/2 @ /2 n/2 N2/it Iy (5 )29
Hee) = Jo 7R e J%_l(zt)(”‘) ar

end inder the change of variables T} = 2ft, this becomes

o i 2 /2
(7.6) Wire) = [ (P25 et W
J 0 ! <m
By writing o(¢) = ZajEZj and substituting into the integral
j=0

(7.5) we obtain

o 2.¢ % ]
u(r,t) = (2'rr)'u/2 rl-“/2 f Eu/2 J& (rg)e”t t{ Zajiz‘]\} ag
0 -1 )
2 j=0

© . © 2 2 J
=) 22 (e | S et ) e

j:O J 0 7 % -1
_m =J, _ T .
—-Z (-£)JaB(x,8) (oy (7.5)) = Z ¥ (r,t)
j=0 j=0
with bj = (—4)—jaj = cp(zj)(())/[ (—A)j(Zj).'] . The above interchange of

sumation and integration is wvalid if, say,
o 2 © .
'J‘o g4/ Ty (rg)e”® tl-( Z IajlzzJ)dg <o,
-1 j=o0

This is dominated by the integral
o0 2 (o] .
IO EP/2 e-E t( E: IajlzzJ)dE which converges, because the
j_

growth condition on ¢(£) implies that the inner sum is bounded by

EZtl
Me , t' < 0 < t, for some M > 0.



- 27 -

(b) Necessity. Assume that Z bg J(r t) converges.
J=o

oo
Teke c > o. By (2.10) the series z {bleg(r,-t) / £
j=0

converges

e’

forallT >0 ont =c end by lemma 5.3, b, = O[((3) ] as j— .

Then U.(I','t)

"
418
o’
=)

H
ct+

iH
L\/_I
;J
N
-
~
)
o
aa
~
™
N
\_/Ll
e
)
™

o 2 pasd .
I Ep./2 LA Z ij l(AEz)J dE < © to give validity to the above
Jg Lt

representation. But from our growth bound on bj as j —>» «, we have

1/;

llmsupllal/—llmsupllz;]bl e o.
J—> e J— =

Thus () is an entire fupction of growth (1,0) in 52 .



10.

11.

12.

REFERENCES

2
P. Appell,"Sur ' équation 9—% - 09z/8y = 0 et la théorie de la
ox

chaleur,"J, Math. Pures Appl. Vol & (1892), pp 187-216.
b

L. Bragg, "A Rodrigues' Formula for the Laguerre Polynomials,"
(submitted to the Michigan Mathematical Journal).

H. Buchholz, Die Konfluente Hypergeometrische Funktion, Springer-Verlag,
Berlin, 1953.

A, Erdelyi (ed), Bateman Manuscript Project, Higher Transcendental Functions,

Vol II, 1953, New York.

E. Feldheim, "On Laguerre and Hermite Polynomials," The Quarterly Journal
of Mathematics, Vol XI, 1940, pp 18-29.

,"Sur les Fonctions Génératrices des Polynomes de Laguerre et

D' Hermite,"Bulletin Seci. Math II, S 63 (1939), pp 307-329.

I.I. Hirschmann and D. V. Widder, The Convolution Trangform, Princeton,
1955.

E. Rainville, Special Functions, New York, 1960.

P. Rosenbloom and D.V. Widder,"Expansions in Heat Polynomials and
Associated Functions," Trans. Amer. Math. Society, Vol 92, 1959, pp 220-266.

G. Szego, Orthogonal Polynomials, Collog. Amer Math Soc.,Vol XXIII, 1959.

S. Tacklind,"Sur les classes quasianalytiques des solutions des
équations aux dérivées partielles du type parabolique," Nova Acta
Soc. Sci. Upsal.,Ser IV, Vol 10 (1936), pp 1-56.

D.V. Widder,"Analytic Solutions of the Heat Equation," Duke Math
Journal, 29 (1962), pp 497-503.




